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Dispersion relations with finite propagation speed 

Yossi Avron 
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel 

Received 8 May 1979, in final form 29 January 1980 

Abstract. We consider waves generated at t = 0 by prescribing Cauchy data. It is shown 
that, under weak assumptions the waves propagate inside the forward light cone only if 
Z , o ? ( k )  is a polynomial in k of degree 2. 

1. Introduction 

It is well known that causality imposes strong restrictions on the admissible functions for 
the index of refraction, n ( w ) ,  and the dielectric function € ( U ) .  This was first realised by 
Sommerfeld in 1914 and subsequently by Brillouin (Brillouin 1960). Among the 
numerous implications of these results are the Kramers-Kroning relations that relate 
the real and imaginary parts of n ( U )  (or € ( U ) )  through Cauchy integral formulae. The 
purpose of the present paper is to perform a similar analysis for the dispersion function 
w ( k ) .  We shall consider waves propagating in a linear and homogeneous medium. By 
linearity we mean that the superposition principle holds, i.e. if Ul(x, t )  and U2(x, t)’ 
solve the relevant wave equation so does Ul(x, t )  + U2(x, t ) .  By homogeneity we mean 
that if U(x, t )  is a solution so is U(x +a,  t )  for all a. It will not be necessary to assume 
that the medium is isotropic, so U(Rx, t )  need not be a solution if U(x,  t )  is where R is a 
rotation. We shall also not assume that the wave equation is a partial differential 
equation. 

Two model equations for the wave U(x, t )  that satisfies the above assumptions are 

In applications, the wave equations are often second order in time (at least in classical 
physics). This makes (b) the more interesting of the two. (a) is considered because the 
analysis is essentially the same but less involved. (The usual wave equation obtains for 

We shall assume that the wave is generated at t = 0 by prescribing Cauchy data. This 
means that at t = 0 U(x,  0) (and in case (b) also a,U(x, 0)) is specified. For t < 0, U(x, t )  
is identically zero. 

Our original motivation was to characterise the class of dispersion functions w (k) 
that propagate the Cauchy data within the forward light cone and in a second stage, to 
see how this class accommodates classical dispersions such as phonons, capillary waves, 
plasma waves, electromagnetic waves in dielectric etc. 
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As we shall show, waves generated at t = 0 propagate inside the (forward) light cone 
only for Xj w : ( k )  polynomial in k of degree 2. Thus, apart from a few exceptions, the 
aforementioned examples cannot be accommodated with the requirement of finite 
speed of propagation. 

It is important to realise that the causality criteria for w ( k )  are neither implied by, 
nor in conflict with, the Sommerfeld and Brillouin causality criteria for n ( w ) .  We shall 
discuss this point in some detail. 

The broblem treated by Sommerfeld and Brillouin and the problem treated here are 
different, Sommerfeld and Brillouin consider a semi-infinite, one-dimensional half 
space x k 0 with time evolution given for all - CO < t < CO by 

m 

V(x, t )  = I-, ~ ( w )  eiw[n(w)x/c-tl dw. 

V(x,  t )  is the wave and A ( w )  is related to a source that excites the medium for t k 0. 

for causality is 
A straightforward consequence of the Cauchy formula is that a sufficient condition 

(a) n ( w )  is analytic in the upper half w plane; 
(b) Im w ( n ( w ) -  1 ) k O  for Im w 3 0  as 1w1- *~0 .  
In contrast, the problem considered here has the roles of space and time 

interchanged. Typically, we consider the entire axis -CO < x < CO. A wave is excited at 
t = 0 and for t k 0 alone; its time evolution is given by 

For t < 0, U = 0 identically. L ( k )  is related to V(x, t = 0) .  As we shall show, V(x,  t )  
vanishes outside the forward light cone provided 

w ( k )  = ak  + b. 

Thus, causality imposes a stronger condition on w ( k )  than it does on n ( U ) .  It is perhaps 
unexpected that the slight change of roles played by x and t in the two problems has such 
dramatic consequences. How this comes about should become clearer in what follows. 
Here we remark that the light cone condition distinguishes the time axis and an x-t 
symmetry is not to be expected. Indeed, that n ( U )  is analytic for Im w k 0 while w ( k )  is 
entire for all k (with positive or negative imaginary parts) is related to the light cone 
containing arbitrary x ’ s  but only positive times. 

There is also a direct way to see that the Sommerfeld-Brillouin results for n ( w )  do 
not translate to the present problem. 

For an isotropic medium k = wn ( w ) .  However k ( w )  cannot, in general, be inverted 
to yield a unique w ( k ) .  A typical example is 

n 2 ( U ) =  l+wE/(wz-w2-iwr) 

for which w ( k )  has four Riemann sheets. Furthermore, even if a branch is chosen 
arbitrarily, it will not propagate (*) inside the light cone. This is easily seen since w ( k )  
has singularities both in the upper and lower k planes and for 1x1 k ct the contour of 
integration in (*) cannot be shifted to infinity (it is ‘pinched’ by the singularities). There 
is therefore no reason for (*) to vanish. 
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2. Statement of results 

Consider wave propagation according to the dynamics 
m 

j = l  
fl [ w j (  - iV) + i a , ] ~ ( x ,  t )  = 0 ,  t b O ,  

or equivalently 

, t b O ,  
(2T)-n/2 dnk h;.(k) eik.x-im,(k)l 

(1') 
10, t<O.  

U(x,  t )  = 

m is the order in time of the differential equation. We shall consider only m = 1 and 
m = 2. m = 2 is the physically more interesting case. m is also the number of 'branches' 
of the dispersion, i.e. the number of different {wj(k)}. Indeed, for solvability of the 
{h;.(k)} in terms of the Cauchy data {d'U(x, t = O)/at'}, w i ( k )  # w j ( k ) ,  i # j (Krotschek 
and Knudt 1978). Equation (1) is a pseudodifferential equation: for light propagation 
in a vacuum, w1,2 = f lkl, it reduces to an ordinary partial differential equation. We 
shall assume Im w i ( k ) s M < c o  for all real k, and M an arbitrary constant. This is a 
requirement of at most exponential gain of the medium. A tilde ( - )  denotes the 
Fourier transform. 

Theorem I. Let Im w ( k ) s M ,  k real, m = 1. Causality for any i(k) implies 

w (k) = a .  k + b 

for a real and la I S c. 

Remarks. 
(1) c is the velocity of light. 
(2) A n y  stands in contradistinction to all. 
( 3 )  This is known as a no-go theorem in relativistic quantum mechanics (Velo and 

Wightman 1978). 
Theorem 1 has a corollary that seems worth separating out: 

Corollary 2. If, under the conditions of theorem 1, U(x,  t )  has support inside some fixed 
ball for all r, then w (k) = constant. 

This can be described as absence of (non-trivial) soliton solutions for the linear 
dynamics (1). 

m = 2 with w l ( k )  # w 2 ( k )  (a.e.) is associated with a second-order differential 
equation. It is then natural to write (1) in terms of the initial data f(x) E U(x,  t = 0) and 
g(x) = a,U(x, t = 0):  

e-iw2(k)t 
w2(k)  -w1(k) ' 

e -iul(k)t-  

- ( 2 ~ ) - " ' ~ i  \ d"k eik'"g'(k) 

We shall say that k is a double point if w l ( k )  = 4 k ) .  

(3) 
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Theorem 3. Let w l ( k )  # w Z ( k )  (a.e.), Im w i ( k )  s M ,  k real, i E {1,2}. Let (f, 0) (or (0, g)) 
be the (measurable) initial data with support inside a finite ball and Fourier transform 
which does not vanish on double points. If for such initial data U(x,  t )  propagates 
within the light cone of f(g), then 

(a) w l ( k ) + w z ( k )  = a .  k +  6,  a real; 
(b) Z j  w ;  (k) is a polynomial of degree s 2 in k. 

Remarks. 
(1) A class of causal dispersions is w 2 ( k )  = a2k2+  b2 ,  O S  a S C ,  b real. a = c, b = 0 

describes light in a vacuum; 0 s a s c, b # 0 describes certain non-dissipating plasma 
modes. 

(2) In the isotropic situation k may be taken as a single complex variable and double 
points are (generically) discrete. It is then easy to arrange for suitable, non-vanishing 
initial data. In any case, S-function initial data have a constant Fourier transform and so 
fulfil the requirements of the theorem. See also remark (2) of proposition 3.4. 

It follows from theorems 1 and 3 that non-trivial attenuation is incompatible with 
causality for most initial data. This is in marked contrast with the corresponding 
boundary value problem which has non-trivial refraction index functions (Brillouin 
1960, Nussenzweig 1972). 

3. Proofs 

Introduce the notation 

r = {x, tlt 2 0,Ixl 

r+ to = {x, tlx, ( t  - to) E r}: 
ct}: the forward light cone 

the shifted cone 

the backward light cone - r={x,  t l ( - x ,  - t ) E r } :  

r* = {k, RIR 5 0,  lkl s a/c}: the dual cone 

z = z l + i z 2  

fi(k, a): the Fourier transform of U(x, t ) .  By a theorem of Paley and Wiener (see 
Reed and Simon 1975), if U(x,  t )  has support in the (shifted) light cone then, f i (kR)  is 
analytic for ( k 2 ,  Cl,) E - r*. By explicit computation, 

Specialising to m = 1 and m = 2: 

to = R / c ,  where R is the radius of a ball containing the initial data. By the Paley-Wiener 
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theorem (see appendix) to<m is equivalent to Co(k) ,  f ( k )  and g’(k) being entire 
analytic. 

To avoid repetitions the following are assumed throughout this section: 

(b) Im oj(k) G 0, k real, all j (this involves no loss of generality if the medium is of at 
(a) c, to<m; 

(4 w t ( k )  # W Z ( ~ )  (a.e.1. 
most exponential gain); 

m = l  

Lemma 3.1. w ( k )  is entire analytic. 

Proof. Fix k such that W(R) = O ( k ,  R) is not identically zero. W(R) is analytic at 
(k2, RZ)€ -r* and so has discrete zeros in compacts. Inverting ( 5 )  gives R ’ + w ( k ’ )  
jointly analytic, for suitable R’, in a neighbourhood of k. The completion of the 
argument is simplest in one dimension. W(R) = 0 for at most a discrete set of k and thus 
U ( & )  has at most isolated singularities. But near an isolated singularity the denominator 
in ( 5 )  can be made zero in the dual cone, contradicting the analyticity of C ( k ,  R). Thus 
w ( k )  is entire. 0 

Proposition 3.2. 
Im o ( k )  

C 2- 

where IIm kI2 = (Im kl)’+ (Im k2)’+. . . . 
IIm kl 

(7) 

Proof. (7) is the statement that - R + w ( k )  does not vanish for (k2, Rz) E I?*. Suppose 
the contrary. By lemma 3.1 there is an n-hypersurface S in 1’* containing (k2, R2) 
where R’ = w ( k ) ,  (k;, R:) E S. Since o ( k )  is differentiable at k, the normal to S does not 
lie in the kz hyperplane. Thus the projection of S on the k2 hyperplane contains an 
n-sphere about kZ. But C ( k ,  R) is analytic in -r* and so C ( k )  einto must vanish 
identically on the zeros of R + w ( k ) .  Thus CO&) vanishes on a small n-sphere about k2. 

0 Since it is entire fio(k) vanishes identically. 
The proof of theorem 1 follows easily. By (7) 

Imw(k)sc lk l .  (8) 
By a version of Liouvill‘e’s theorem (Titchmarsh 1939), an entire function satisfying (8) 
is a polynomial of degree < 1. 

m = 2  

For simplicity consider initial data (0, g’(k)).  
The denominator in (6) is 

A(k, R) = R 2 + R [ w ~ ( k ) + w z ( k ) ] + ~ 1 ( k ) ~ z ( k ) .  

The analogue of lemma 3.1 is 
(9) 

Lemma 3.3. w l ( k ) + w z ( k )  and w l ( k ) w Z ( k )  are entire analytic. 
The proof is essentially the same as in lemma 3.1. 
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Remark. In situations with time reversal invariance wl(k) = - W Z (  - k). If, in addition, 
w ( k )  is isotropic the first condition holds trivially ( w l ( k )  + w z ( k )  = 0) and one has only 
0 2 ( k )  entire. 

Proposition 3.2 has the analogue: 

Proposition 3.4. 

Proof. As before, (10) expresses A(&, R)#O for (k2,  RZ)€ -r*. Suppose first 2 R #  
o l ( k ) + w z ( k ) .  Then if A(k, a)= 0 the zero is simple, i.e. dnA(k, R)#O. This is 
analogous to the situation in proposition 3.2 and so one concludes that A(k, 0) has no 
simple zeros. Consider now double points. Since g"(k) is assumed to be non-zero on 

U double points, A(k, R) may not vanish for (k2, R,) E - I'*. 

Remarks. 
(1) a( - r*), the boundary of -I?*, may contain simple and double zeros of A(k, R). 
(2) If w l ( k )  - w z ( k )  has non-degenerate zeros, A(k, R) has simple zeros in a (k2 ,  R2) 

neighbourhood of double zeros. Theorem 3 then holds for any initial data. 

Proposition 3.5. 
(a) w l ( k ) + w ~ ( k ) = u .  k + b ,  
(b) w : ( k ) + w : ( k )  is a polynomial in k of degree G 2. 

U real and Im b s 0. 

Lemma 3.3 and Liouville's theorem give that wl(k)+wz(k) is a polynomial of degree 
s 1. (c) of the 'standing assumptions' then gives (a). Write 

w : ( k ) + w : ( k )  = [wl(k)+wz(k)l-2wl(k)w2(k). (12) 

The LHS of (12) is entire by lemma 3.3. Now, by (a) and (10) 

- c(Im k( + Im b s Im w (k) < c(Im kl. 

Re[@:@) + w : ( k ) ]  2 - [(Im w ~ ( k ) ) * +  (Im wz(k ) ) l  

(13) 
Hence 

3 - 2[c(kl+2clk( + b].  (14) 

Invoking Liouville once again, for (14) now, proves (b). The theorem follows directly 
from proposition 3.5. 
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Appendix 

Liouville's Theorem (Titchmarsh 1939, p 87). Let A ( r )  denote the upper bound on the 
real part of f(z) on IzI = r. Then, if f(z) is analytic for all finite z and A(r)  s A r k  for 
r 3 ro with ro, A and k constants, then f(z) is a polynomial of degree s k. 

Paley-Wiener Theorem (Reed and Simon 1975, p 23). Let T be a tempered distribution 
with support in the cone r; then its Fourier transform f extends as an analytic function 
to the tube R" +iT*. 
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